視覺智能引擎+數據決策引擎——打造商業“智能沙盤”
來源:奇點云 作者:奇點云 更新于:2019-12-4 閱讀:
眾所周知,線上商家可以通過淘寶平臺的大量前端“埋點”輕松獲取商品的加購率、收藏率、轉化率、成交額等大量基礎信息,甚至商家能夠在更精細的層面,獲取商品關鍵字變化或者上新/爆款帶來的流量變化數據,更甚者商家能夠獲取競品的流量結構,從而不斷調整自己的商品結構以及經營策略。
那么如何讓實體商家擁有淘寶一樣的數據化運營能力呢?下面,我們主要以大型綜合體為例,來看看為了實現我們偉大的使命——讓商業更智能,我們如何應用視覺智能引擎以及數據決策引擎來打造商業“智能沙盤”系統,從而幫助線下的商家在“智能沙盤”上通過數據分析推演計算、運籌帷幄、決勝千里之外。
1、數據怎么來
對于線上商家來說,他們的數據來源于電商平臺的大量前端“埋點”。而線下綜合體的數據應該怎么來?我們通過自研的AIoT+云能力,打造AI+IoT+云環境,從而完成對綜合體的“人”與“場”的數據刻畫收集。通過前面的一些技術介紹(Face ID、Re-ID、識貨等),我們擁有一個強大的視覺智能引擎,而該視覺引擎與云計算平臺結合情況下,構建了一套AIoT+云的數據收集平臺。
對于數據的收集,通過IoT智能終端+AI算法,對人進行畫像,對場進行畫像。其中IoT智能終端包括奇點識客、奇點魔盒等。
通過我們的視覺智能引擎,可以圍繞人這一主體抽象出屬性畫像、行為畫像、關系網絡等。屬性畫像,包括基礎的性別、年齡、身高等,更復雜的屬性包括穿著、外貌、職業等,比如發型、臉型、唇彩、上衣風格、下衣風格、項鏈、挎包類型等。行為畫像包括進場位置(停車場or大門)、場內消費、場內喜好區域、場內運動軌跡、是否存在危險行為等。關系網絡則包括親密關系、親屬關系、同行關系等。
場的畫像,包括區域畫像和店鋪畫像。其中區域畫像,指的是對某個具體區域在時空多個維度上進行區域熱力、區域人流、區域價值等多方面進行分析。而店鋪畫像,通過結合人的畫像,從而對一個店鋪的熱度、店鋪消費群體、進店轉化率、店鋪復購率、店鋪行業屬性等多方面進行描述。
2、數據怎么處理
在大量的IOT智能終端上,每天產生大量的視頻、圖像數據,那么面對如此海量的數據,我們的系統如何做到多算法級聯、及時響應、快速處理、穩定運行呢?在此,我們提出了視頻結構化技術,結構化技術依托端上AI算法、智能設備、奇點云強大的云計算平臺,從而形成了我們AIoT+云的智能數據處理平臺。
這里我們先對結構化技術做一個自我思考后的定義:
「視頻結構化是基于視頻內容(Content-based)做結構化提取的技術,它對視頻內容按照語義關系,采用空間量化、時間量化、目標識別、目標跟蹤、特征提取、圖像處理、編解碼等技術,產生低存儲、高價值、易分析、可理解的高維數據。
視頻的結構化是基于視頻內容的結構化處理,所謂的視頻的內容,就是對視頻中語義進行理解,所謂的語義簡單來說就是視頻中有什么、視頻中發生著什么,而這些通過我們的AI算法能夠準確地進行描述。另外時間量化和空間量化能夠更加精確地描述在什么時間、什么地點,視頻中有什么、發生著什么!
「存在一個攝像頭,通過我們系統自帶的空間標定工具,完成攝像頭的成像與CAD圖的映射關系,即攝像頭中的每一個位置都能精確的投射到CAD圖上。該攝像頭覆蓋區域內存在店鋪A、廣告位B,在某段時間內有數十位顧客經過該攝像頭。那么我們以個體為維度,通過Re-ID、Face ID、屬性、跟蹤等算法,我們可以產生以下較為簡單結構化數據:
以店鋪為維度,通過行人檢測、Re-ID識別去重、目標跟蹤分析等技術,我們可以產生下面較為簡單的結構化數據,而通過這些簡單數據我們可以快速算出該店的進店轉化率、通過停留時間可以初步算出消費轉化率、主要消費群體等數據。
而以廣告位為維度,可以生成廣告位的轉化率、廣告吸引群體等數據。以攝像頭拍攝區域為維度,可以分析區域熱力、區域人流動向等基礎數據!
從上面的例子我們可以看到,通過IoT智能終端+AI算法的粗加工(我們定義為一級結構化),我們初步從海量的視頻數據中提煉出了較為顆;男畔ⅲ瑥亩蟠蟮臏p小了存儲以及網絡帶寬傳輸。
對于一級結構化,主要在端上進行處理,我們要求盡可能多的保存視頻的內容,同時要盡量少的占用存儲以及網絡帶寬。一級結構化通過端上智能硬件完成多模型協作,快速完成對視頻內容的粗加工,然后將一級結構化數據上傳到云端,進行精細的二次結構化處理。
二級結構化,依托強大的云計算能力,在云上完成更加精細化的數據處理、分析。而在二級結構化系統中搭載著我們的智能決策引擎,通過對大數據的分析、挖掘以及行業先驗知識沉淀,從而產出高價值、易分析、可理解的數字化信息。
整個數據處理平臺具有分級處理、多級聯動、動態節點分配、多節點負載均衡等特點,從而保證整個系統能夠穩定、快速數據加工處理。
而數據收集系統的系統架構,如下圖所示:
3、數據怎么應用
如果說上面的鋪墊主要是介紹平臺的眼睛——視覺智能引擎,那么下面我們將通過一些實例來介紹平臺智慧的大腦——數據決策引擎在“眼睛看到的內容”下如何讓商家進行推演計算,從而讓商家能夠未卜先知、明察秋毫、統籌全局。
3.1 基礎報表
通過對顧客、商場、區域、時間段、商場店鋪等多個維度的分析,每天會產生上千維的數據報表,報表包括簡單的商場客流、店鋪客流、男女比例、熱門店鋪、區域熱度等等。通過這些數據報表,可以快速的看出商場的近期的運營情況,以及關注熱點。
3.2 商場布局
在電商平臺上,店鋪需要爆款進行引流,而在進入店鋪后,通過推薦、組合售賣等策略引導客戶進行深度逛店。在線下也是一樣的,我們希望顧客來商場不是買了個東西就走,而是能夠深度地進行逛吃逛吃,畢竟讓流量流動起來才能產生其豐富的價值。
通過我們的“智能沙盤”系統,我們已經獲取了數字化的店鋪數據,了解了每個店鋪的店外流量、進店轉化率、消費轉化率等基礎數據,通過這些數據我們可以了解哪些店鋪是商場的“引流店”,哪些是商場的“耗流店”。再通過我們對數據的更層次的挖掘分析,我們可以發現店鋪與店鋪之間有它的關聯性,比如60%的人去過A店,會去B店、C店。
那么我們對引流店,我們可以往商場稍微深一點地方放,這樣就會吸引更多客流往商場里面流動。同時具有強相關的店鋪,讓它們距離一定的距離,這樣從A店去往B店或者C店的路上,必將經過其它店鋪,就能讓顧客更好的流動起來,從而產生其它的購物轉化率。
當按照數據分析,對商場進行布局后,我們的“沙盤”很快就能反饋其產生的正負作用,通過對數據的進一步梳理分析,可以進一步微調優化整個商場結構。
3.3 智能推薦
在線上我們經常能夠因為“千人千面”的推薦系統,從而收到緊貼我們需求的商品推薦。那么在實體商店中我們可以如何對玩轉智能推薦呢?
我們先講一個線下與線上結合的推薦方式,該前提是推薦對象為商場的注冊會員。通過上面我們舉個數據收集的例子,我們可以了解到通過AIoT智能終端我們可以獲取會員去了哪、是否產生購物、復購率等數據。那么假如我們發現會員甲經常會在A店鋪產生消費,那么在該店鋪有促銷或者活動的時候,我們可以通過短信或者線上App對該會員進行相關商品推薦或者短信提醒。
另外一種為直接線下的推薦方式,該前提為商場存在多個電子廣告位。而當有某位顧客在廣告位上停留的時候,我們可以根據其在商場中的用戶畫像,快速給她推薦對應的商品,從而做到與線上的“千人千面”一樣的推薦效果。
3.4 廣告投放
對于商場里的商家,需要進一步宣傳或者吸引顧客到店消費,那么商家就會在商場的其它地方進行廣告投放,從而來吸引客流。那么廣告投放在哪?廣告位又怎么收費?
對于廣告的投放,可以多點投放,然后我們通過系統能夠快速分析出改點廣告位產生的轉化率。打個比方,顧客甲在廣告位A旁停留過,最后進入投放該廣告的店鋪消費,那么就產生了轉化。那么通過對一段時間的數據分析,我們就可以分析各個廣告投放點的轉化率,從而擇優選擇轉化率高的廣告點位。
而對于商場來說,廣告位怎么收費呢?商場可以根據廣告位的客流數量、區域熱度、區域價值以及該廣告位的歷史轉化率進行廣告位定價收費。
3.5 趨勢預測
通過AIoT+云的能力我們從時間、空間等多個維度上對數據進行進一步量化。那么通過歷史的數據分析,我們基本可以分析出下一個時間階段的流量變化、下個階段用戶消費習慣,從而我們進行優化的調整我們的經營策略,從而優化顧客產生的價值。
上面通過一些簡單的實例對“智能沙盤”在于如何輔助商場進行戰略布局、優化經營、預測未來等方面進行分析,但是數據的價值遠遠不止這些。相信越來越多的精細化數據分析,會產生越來越多的數據價值,而線下的商家應用這些數據也能像線上商家一樣靈活運營自己的店鋪。
上篇:
下篇: